English |

DOI: 10.22213/2658-3658-2017-6-19


Collision Free 3D Navigation Algorithms and Their Implementation in an Autonomous Flying Robot

Ibrahim, I. N., Karam, A. A., Al Akkad, M. A.

Received: 2017-11-17

Article language: English

Abstract. In this paper, a method for collision-free three-dimensional autonomous navigation of an underactuated coupled non-holonomic unmanned aerial vehicle (UAV) among obstacles was proposed. This method will be the basis for designing a planner for the UAV trajectory guidance in a 3D cluttered environment. The planner assumes that the cost of flying over an area is independent of the path through which the UAV reaches that area, however this is not always true. Moreover, the path problem is not formulated as a matter of numeric cost minimization to be solved by methods like dynamic programming, which is time-consuming. A dynamic model of six degrees of freedom hexacopter equipped with a robotic arm has been formulated using Newton-Euler’s method. Then, the equations of motion of the UAV are derived by including disturbances analysis. The derived dynamic model reflects the real motion of the hexacopter with respect to the earth, which is also characterized by nonlinearity, time variance, underactuation and coupling among the equations' variables. This paper suggests bio-inspired and sample-based algorithms in order to solve and optimize the three-dimensional path-planning problem. A unique real-time obstacle avoidance approach based on artificial potential field concept in addition to an off-line genetic algorithm were investigated.

Keywords: evolutionary algorithm, sample-based algorithm, bio-inspired algorithm, artificial potential field, genetic algorithms, unmanned aerial vehicles, path planning, collision avoidance

Pages: 6–19Total pages: 14

Published in: Instrumentation Engineering, Electronics and Telecommunications – 2017: Proceedings of the III International Forum (November 22–24, 2017, Izhevsk, Russian Federation)

Year of publication: 2017

Scientific conferences Kalashnikov Izhevsk State Technical University

© Kalashnikov Izhevsk State Technical University, 2024

All rights reserved