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Abstract. In this paper, a method for collision-free three-dimensional autonomous navigation of an 
underactuated coupled non-holonomic unmanned aerial vehicle (UAV) among obstacles was pro-
posed. This method will be the basis for designing a planner for the UAV trajectory guidance in a 3D 
cluttered environment. The planner assumes that the cost of flying over an area is independent of the 
path through which the UAV reaches that area, however this is not always true. Moreover, the path 
problem is not formulated as a matter of numeric cost minimization to be solved by methods like dy-
namic programming, which is time-consuming. A dynamic model of six degrees of freedom hexacop-
ter equipped with a robotic arm has been formulated using Newton-Euler’s method. Then, the equa-
tions of motion of the UAV are derived by including disturbances analysis. The derived dynamic 
model reflects the real motion of the hexacopter with respect to the earth, which is also characterized 
by nonlinearity, time variance, underactuation and coupling among the equations' variables. This pa-
per suggests bio-inspired and sample-based algorithms in order to solve and optimize the three-
dimensional path-planning problem. A unique real-time obstacle avoidance approach based on artifi-
cial potential field concept in addition to an off-line genetic algorithm were investigated. 

Keywords: evolutionary algorithm, sample-based algorithm, bio-inspired algorithm, artificial potential 
field, genetic algorithms, unmanned aerial vehicles, path planning, collision avoidance. 

INTRODUCTION 

Tsai, et al. [1] proposed a three-dimensional real-time path planning based on rapidly-
exploring random tree algorithm (RRT). However, the paths generated are, in general, not op-
timal due to the existence of redundant waypoints. Bagheran and Alos [2] used genetic algo-
rithm (GA) and particle swarm algorithms to generate the path that should be a sequence of 
speed rate and angles at discrete times, where the cost function was calculated precisely and 
3D maps were generated containing the geographic data accompanied by a digital terrain 
model and a geographical information system. Two approaches were investigated the artificial 
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potential field algorithm (APF) and the genetic algorithm (GA). APF algorithms are sorted as 
sampling-based algorithm because it needs the whole workspace sampling information to es-
cape from local minima [3]. While genetic algorithm [4–5] is the most famous population-
based numerical optimization method and originate from mimicking biological behavior in 
solving problems, Gouda [4] presented a path planning for a manipulator in a 3D environment 
based on a GA method, where the full and optimized path was formulated as three real chro-
mosomes containing three-real trajectories in a fixed time. Zhang, et al. [5] proposed fuzzy 
logic control technology to solve the distance between the vessels to solve uncertainty-
planning problem of a set of underactuated unmanned vehicles within a given space, more-
over, they used GA to optimize the input/output scaling factor of a fuzzy controller. Interest-
ing ideas for path formulation in addition to fuzzy adaptive differential evolution for path 
planning in a 3D environment was presented in [6–9], where UAV must have some sensing 
capabilities to operate in a dynamic environment while it is not required in a static environ-
ment as every information of the environment will be known beforehand. Wang and Zhang 
[10] used a fuzzy logic approach as a method to output a threat cost gain in order to enable the 
UAV escape from a sudden threat quickly, and the final route was calculated by a differential 
evolution algorithm. Shen, et al. [11] used a model predicting technique in real-time to find an 
optimal track in a three-dimensional complex environment, especially under the threat of 
moving targets. Where the weight of each factor of maneuvering performance was calculated 
by a multi-objective optimization algorithm in the search space. Kurnaz, et al. [12] used tacti-
cal air navigation (TACAN) approach and the performance of the fuzzy based controllers is 
evaluated with time-based diagrams, the simulation studies presented verify that the UAV can 
follow the predefined trajectories despite the simplicity of the controllers. Kurnaz, et al. [13] 
evaluated the performance of adaptive neuro-fuzzy inference system (ANFIS) based control-
lers in relation to the autonomous operation of UAVs, nevertheless, for some flight condi-
tions, the ANFIS type controller has resulted in unstable performance. This has demonstrated 
that more stable learning algorithms need to be adopted. Vadakkepat, et al. [14] used an APF 
method combined with a genetic algorithm, to derive a new methodology named evolutionary 
artificial potential field (EAPF), the proposed method aims to navigate robots situated among 
moving obstacles based on optimal potential field functions. Khatib [15] proposed APF as 
a real-time obstacle avoidance approach for manipulators and mobile robots. APF methods 
have lower computational requirements than local planning approaches and could be extended 
to moving obstacles by using time-varying and adaptive techniques while running [16]. 
Wang, et al. [17] extended the range of robot’s vision in order to operate in unknown and un-
certain dynamic three-dimensional environments with a number of stationary or moving ob-
stacles. Lee, et al. [18] addressed a new inherent limitation of the potential field methods re-
ferred to as symmetrically aligned robot-obstacle-goal (SAROG), which involves critical risk 
of local minima trap. 

PROBLEM STATEMENT 

This paper suggests a design of a robot guidance algorithm, which will be used as a plan-
ner for UAV navigation with collision avoidance in a 3D cluttered environment. This design 
is based on bio-inspired and sampling-based algorithms with two types of known 2D-3D en-
vironments. This problem of path planning is attributed to the top layer of a robot control 
process. And it is described as a continuous real-time planning, in a dynamic 3D environment 
with a number of stationary or moving obstacles, of a non-holonomic under-actuated nonlin-
ear UAV with bounded control input.  
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We suggest that the vehicle operates in a three-dimension (R3) space called S as shown in 
Figure 1 that contains several static and dynamic obstacles Osi and Odi. Obstacles can be of 
any irregular shapes but we assume that obstacles are always inside or covered by a sphere of 
a known radius ri and a known center ci located in obstacle space called Sobstacle. In addition, 
there is also a stationary start point S and a target point T located in a three-dimensional free 
space called Sfree. Now the objective is to generate trajectories of the path from S to T in Sfree 
where the vehicle should always stay. Thus, the path-planning problem is defined by a triplet 
(S, T, Sfree), with the following definitions [3]: 

– Path planning is a continuous unbreakable process F that achieves ( ) ,freeSδ τ ∈  for all 

[ ]0, Lτ∈  where 3Rδ ⊂  is a function of bounded variation, where ( )0 Sδ =  and ( ) .L Tδ =  

– Optimal path planning is a process F* after fulfilling F to find the optimal path δ* 

whose cost is ( )( )min ,iC δ  where δi is the set of all feasible paths, and C is the cost function: 

( ) 0.i i
i

C Rδ ∈ δ ≥∑  

– Path planning augmentation is the process of finding a continuous curve in the con-
figuration space made up of segments of which each can be a trajectory, and starts at node S 
and ends at node T, without continuous time consideration, including stops in defined posi-
tion. 

– Trajectory generation is the process of taking the solution from the path planning al-
gorithm and determining how to move along the path, considering the Kino dynamic con-
straints, which can be an element of the path. The trajectory is a set of states that are associ-
ated with time, described by a polynomial X(t). Velocities and accelerations are computed by 
taking derivatives with respect to time.  

 

 
Figure 1. Three-dimension (R3) environment 

METHODOLOGY PATH FORMULATION 

In this initial path planning research, it is assumed that all the information about the envi-
ronment, including the obstacles’ areas, is known to the UAV. In our study, the UAV is as-
sumed to be in an environment with different obstacles’ areas. The UAV has to avoid the ob-
stacles areas; otherwise, there will be some penalty for paths passing through those areas. The 
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path-planning problem can also be formulated as a 3D path-planning problem or a 2D path-
planning problem, by assuming the constant altitude sometime after takeoff. All three dimen-
sions are considered in this study during the entire flight [4]. The main goals in our method 
are to produce an optimum 3D path by taking into our consideration real-time computational 
time, obstacles areas and path distance from S to T while formulating the path. Figure 2 shows 
Voronoi diagram that was introduced by Shamos and Hoey [45] and developed by Luchnikov 
et al. [44] for 3D environments. It is used to generate the topological connection. With high 
number of obstacles the problem turns out sophisticated and here we can see if there is a solu-
tion based on the calculation of the Voronoi channel [45]. Figure 2 demonstrates the complex-
ity of the problem for a fixed altitude. 

 

 
Figure 2. Voronoi diagram of environment 

In this paper, two types of algorithms will be investigated: artificial potential field algo-
rithm in the 3D environment and bio-inspired algorithms in the 2D environment after assum-
ing the constant altitude. Firstly, the initial path process is initialized by determining the start 
point S and the target point T, as shown in Figure 3. There are some obstacles’ areas in the 
task region, which are all presented in the form of a sphere. In this environment, we will apply 
APF algorithm which works on-line, while the vehicle is in the space, by taking only the co-
ordinates, the center, and the radius of each obstacle. Then we will apply bio-inspired algo-
rithms (genetic and differential evolution algorithms) which works off-line after doing some 
transformations in the 2D environment. 

These simplifications are as follow. First, we connect point S and point T in a straight 
line, which is considered as the optimum path but contains penalty collisions with obstacles, 
so we divide this line to equal ST segments that define the accuracy of the planning, draw a 
vertical line of at each ST segment point. This set of lines can be denoted as 1 2, , ..., ,...,k TL L L L  

at each line producing a discrete points collection 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ){ }..., , 2 , , 1 , , , , 1 , , 2 ,... ,kC x k y i x k y i x k y i x k y i x k y i= − − + +  

which is called waypoint. We take a discrete waypoint at each line and connect them in se-
quence form in a flight path P. In this way, the path-planning problem is turning into optimiz-
ing the coordinate series to achieve a superior fitness value of the objective function. To ac-
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celerate the algorithm’s search speed, we can let ST line be the X-axis and take the coordinate 

transformation on each discrete point ( ) ( )( ),x k y k  according to formula (1), as shown in 

Figure 3, where ( )−π < θ < π  is the angle that the original X-axis counterclockwise rotates to 

parallel ST segment, while ( ),s sx y  represent the coordinates in the original coordinate system 

[5–6, 9]. Figure 4 shows the problem of path planning after applying the simplifications with 
fixed radius obstacles:  

 
X X

R
Y Yθ

′⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥′⎣ ⎦ ⎣ ⎦

, while 
cos sin

sin cos
Rθ

θ θ⎡ ⎤
= ⎢ ⎥− θ θ⎣ ⎦

. (1) 

 

   
Figure 3. Rotation of a two-dimensional 

Cartesian coordinate 
Figure 4. Path planning formulation 

and coordinate transformation 

UAV EQUATIONS OF MOTION 

In this paper the flight model equations and UAV physical constraints are similar to [21, 
22]. A simplified kinematics model of a UAV flying in a three-dimensional airspace is of in-
terest. So, the UAV is considered as a point in a 3D space, and its translational and angular 
states at time t are defined in [23–25] as follow: 
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( ) / ,

( ) / ,

( ) / .
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U c c s s s u m

U c s s s c u m

U c c u m

⎧ = φ ψ θ + φ ψ
⎪

= φ ψ θ − φ ψ⎨
⎪

= φ θ⎩

 (2) 

The inertial frame position of the vehicle is given by vector [ ] .
T

x y zξ =  The angular 

position of the body frame with respect to the inertial one is usually defined by means of the 
Euler angles: roll ,φ  pitch ,θ  and yaw ψ  where cθ  is equivalent to cos ,θ  also sθ  means 

sin ,θ  and so on, g is the gravity acceleration, m is the mass of aircraft, the disturbance force 

is the other forces like Coriolis force from the earth, wind, and Euler forces which are consid-

ered as disturbances, summarized as DIF  in the Earth frame: [ ] ,T
DI dIx dIy dIz EF F F F=  blade 
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rotation is with angular velocity .ω  Finally, the total thrust force vector of the aircraft is Tu  

and it is the sum of the propellers thrust force vectors 
6

1

.i
i

T
=
∑  

OBJECTIVE FUNCTIONS 

UAV path planning is generally formulated as a multi-objective optimization problem. 
The most critical objective is the path length, which can be directly translated to energy and 
obstacle costs along the path. However, there are researches that take the objectives [2, 6, 27]. 
In our study, the UAV path planning is considered as a bi-objective optimization problem in 
the aim of minimization of both energy cost and obstacle cost. The energy cost eJ  is directly 

dependent on the path length P by measuring the distance from a specified waypoint to the 
target while obstacle cost oJ  represents the distance from each center of an obstacle by taking 

into account the radius of the obstacle, as follows: 

 
0

,
P

e eJ w dt= ∫   
0

.
P

o oJ w dt= ∫  (3) 

Where we, wo are the weights for UAV for the whole path. This research focuses on two 
methods for finding a solution and optimization, the artificial potential field and the genetic 
algorithm methods. The first one is an active classical approach of sampling-based algorithms 
to reactive collision avoidance. This method depends on three objective functions that cause 
repelling from obstacles and attraction to the target, in addition to, escaping from local min-
ima trap [18–20]. Then weight functions can be now written in 3D workspace as follows: 

 
2 2 2

0,  if UAV at the Target,

( ) ( ) ( ) ,  otherwise,e

target uav target uav target uav

w
x x y y z z

=
⎡ ⎤α − + − + −⎣ ⎦

 (4) 

 
2 2 2

1

0, if collision free,

, otherwise,

( ) ( ) ( )
t t t

o m

obstacle uav obstacle uav obstacle uav
t

w

x x y y z z
=

ε
=

⎡ ⎤− + − + −⎣ ⎦∑
 (5) 

where m is the number of obstacles in the workspace, α and ε are the attractive and repulsive 

parameters respectively, [ ]
T

uav uav uavx y z  is the UAV coordination’s vector, 

T

target target targetx y z⎡ ⎤⎣ ⎦  is the target coordinate’s vector and 
t t t

T

obstacle obstacle obstaclex y z⎡ ⎤⎣ ⎦  is the 

tth obstacle coordinate’s vector. 
While the other algorithm is the genetic algorithm which is the second method discussed 

in this study, this is one of the bio-inspired algorithms that aims to optimize the problem 
based on objective cost. Like previous methods, two parameters were also analyzed in this 
study, distance to the target and to the obstacles. Then weight equations can be written as ex-
tended forms for each waypoint i  in the vertical line of segment k  and n is a number of way-
points in each level k, as follows: 

 2

1

,
n

ek eik
i

J D
=

= ∑  (6) 
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 2 2( ) ( ) ,
ik ikeik target uav target uavD x x y y= − + −  (8) 

 
,

2 2

1

( ) ( ) .
t ik t ik t ik

m

o obstacle uav obstacle uav
t

D x x y y
=

= − + −∑  (9) 

ARTIFICIAL POTENTIAL FIELD METHOD 

The philosophy of artificial potential field method APF can be schematically described 
by the movement of the vehicle in a field of forces. The position to be reached is an attractive 
pole for the target and the obstacles are repulsive forces for the vehicles [42] as shown in Fig-
ure 5. In addition to, an escape force for the critical risk of local minima trap, which is a new 
inherent limitation of potential field method, which is a symmetrically aligned robot-obstacle-
goal (SAROG) [43] as shown in Figure 6. APF method has a lower computational require-
ment than local planning approaches [40]. These forces are described as follow: 

 2 2 2( ) ( ) ( ) ,att target uav target uav target uavF x x y y z z⎡ ⎤= α − + − + −⎣ ⎦  (10) 

 
2 2 2

1

.

( ) ( ) ( )
t t t

rep m

obstacle uav obstacle uav obstacle uav
t

F

x x y y z z
=

ε
=

⎡ ⎤− + − + −⎣ ⎦∑
 (11) 

 

   
Figure 5. Normal situation of APF Figure 6. Critical risk of local minima traps 

While the escape force was calculated based on the distances of the obstacle from the col-
lision-free area as shown in Figure 7, we take into consideration the UAV’s orientation in 
space: 

 
1

0, if  No_SARGO,

3 _ _ _ _ cos , if  SARGO,esc o
F r sd

D Cartesian Coordinate Rotation
dv

−
= ⎛ + ⎞⎛ ⎞

⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (12)  

 ,

x x

y BCD y

z z

′⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥′ =⎢ ⎥ ⎢ ⎥

′⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (13) 
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where the 3D Cartesian coordinate rotation is the BCD Euler’s rotation matrices with 

( )−π < θ < π  as follow:  

 

cos sin 0

sin cos 0 ,

0 0 1

D

ϕ ϕ⎡ ⎤
⎢ ⎥= − ϕ ϕ⎢ ⎥
⎢ ⎥⎣ ⎦

 

1 0 0

0 cos sin ,

0 sin cos

C

⎡ ⎤
⎢ ⎥= θ θ⎢ ⎥
⎢ ⎥− θ θ⎣ ⎦

 

cos sin 0

sin cos 0 .

0 0 1

A

ψ ψ⎡ ⎤
⎢ ⎥= − ψ ψ⎢ ⎥
⎢ ⎥⎣ ⎦

 (14) 

Figure 8 shows the axes’ order around which to rotate the coordinates. 

Also, ,

x

y

z

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

x

y

z

′⎡ ⎤
⎢ ⎥′
⎢ ⎥

′⎢ ⎥⎣ ⎦

 are the old and new coordinates of the UAV, respectively. This force 

applies when SARGO occurs; this is when the UAV, the obstacle, and the target are aligned 
or when the target and obstacle are closely positioned. This causes oscillation and is called 
local minima trap. The problem condition is described as: 

 ( ) ( ) ( ) ( ) ( ) ( )2 1 2 1 2 1 3 1 3 1 3 1
ˆ ˆ ˆ ˆ ˆ ˆ ,x x X y y Y z z Z x x X y y Y z z Z c⎡ ⎤ ⎡ ⎤− + − + − × − + − + − ≤⎣ ⎦ ⎣ ⎦

�
 (15) 

where, c
�

 is the vector that specifies the margin, where the UAV and target are located in re-
gard to the obstacle. 

 

   

Figure 7. Escape force calculation method Figure 8. 3D Cartesian coordinate rotation 
based on Euler’s rotation 

GENETIC ALGORITHMS 

Bio-inspired algorithms brought in heuristic ideas, and they can excellently deal with 
complex and dynamic unstructured constraints [3]. It is the most popular population-based 
optimization method. The basic version of GA defines a cost function to evaluate the potential 
solutions, which are the optimal waypoints on each k level along the path. This algorithm 
starts by selecting randomly feasible waypoints as the first generation. Then it takes the envi-
ronment, dynamic ability, target, and other constraints into consideration, to evaluate the fit-
ness of each individual (waypoint). In the next step, a set of individuals is selected as parents 
for the next generation according to their fitness. The last step is a mutation and crossover 
step. The whole process is performed in an iterative way and the process stops when a preset 
goal is achieved. The best fitness waypoints are marked as the optimal path nodes achieved 
the shortest path to target and far away from the obstacle for each segment k as follows: 
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,

2

2
1 1 0

1
(1 ) (1 ) .

t ik

n m n

k ek ok eik
i t i o

J hJ h J h D h
D= = =

= + − = + −∑ ∑∑  (16) 

There are five parameters in GA algorithms, namely maximum generation number, length 
of solution (number of waypoints in this case study), population size, mutation, and crossover. 
Generally, solutions can evolve further when generation number is increased. The length of 
solution decides the complexity of the problem while population size, mutation, and crossover 
alter the performance of GA.  

SIMULATION 

Processes of testing and simulation were made using LabView software. In first simula-
tion process of APF algorithm we suppose simple scenario as shown in Figure 9, where start 
point is (0, 0, 0), target point is (0, 15, 40), orange spheres are randomly generated obstacles 
which parameters are presented in Figure 10. This algorithm is characterized by the ability to 
work in real time without the need for preprocessing of the map in comparison with other al-
gorithms. However, it requires precise adjustment and adaptation of the parameters of attrac-

tion, repelling, and escape 61 ,E−α =  0.8,ε =  0.3,sd =  4 ,odv r=  in order to get a better and 

more realistic path. The algorithm suffers from the trap problem that was explained before, 
when the aircraft is in the same plane with the target and the obstacle and was solved by the 
escape force. This solution is considered insufficient and requires testing and evaluation to 
define the extent of effectiveness. 

 

 
Figure 9. The scenario of testing the APF algorithm in a 3D environment 

 
Figure 10. A diagram illustrating the location and the number of the spherical shapes 
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Simulation depends on assuming that the aircraft is a point in space regardless of motion 
constraints represented by motion. That is why the algorithm requires some modifications of 
adding flying constraints and adding adaptive techniques for automatic modification of the 
algorithm parameters in order to get quicker decision when overtaking obstacles of constant 
radius, presumably for all the obstacles, including the value of the distance between the obsta-
cles and the target and between them and the vehicle; also, the SARGO distance that is de-
fined according to the trap condition equation; additionally, indicators that define the trap 
state and a state that defines overtaking the obstacle. The obtained results of this test are due 
to pure mathematical operations represented by applying the mathematical vectors techniques 
in executing the algorithm according to [17–18] as shown in Figure 11. However, with a 3D 
generalization to find a solution for a multi-target problem represented by keeping away from 
obstacles and getting near from the target. The vector applied on the vehicle is unfeasible; 
there are no constraints on it. Implementing a planner for the motion path of an unmanned ae-
rial vehicle requires making modification by imposing constraints on the motion vector along 
with scaling to transform the vector from pure mathematical to realistic vector. The following 
figures show the vector values. 

 

 

 

 

 
Figure 11. The results of applying APF method and coordinate vectors in 3D view 

In the second simulation the GA algorithm was applied as a suggestion of a navigation 
algorithm with several testing scenarios, which is characterized by being more complex and 
contains 60 spherical obstacles of fixed diameters, generated randomly. These scenarios re-
quire making some prior transformations and maintaining a suitable height. This is to simplify 
the calculations as mentioned before. This theory does not work instantaneously, requires it-
erative processing, and consumes processing time. In real world, the shapes of obstacles are 
not spherical as proposed in previous scenarios. In order to apply the algorithms, it is neces-
sary to make an approximation, which converts the obstacle into a spherical form. The follow-
ing figures from 12 to 15 illustrates the phases of checking the algorithm with modifying the 
algorithm parameters in addition to comparing the results. 
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Figure 12. The results of applying the genetic algorithm in 3D environment with 60 obstacles  

and by using following parameters: segment length ST = 2, population size = 12,  
generation iterations = 12, crossover parameter = 0.9, mutation parameter = 0.03 

 

 

 
Figure 13. The results of applying the genetic algorithm in 3D environment with 60 obstacles  

and by using following parameters: segment length ST = 1, population size = 12,  
generation iterations = 12, crossover parameter = 0.9, mutation parameter = 0.03 
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Figure 14. The results of applying the genetic algorithm in 3D environment with 60 obstacles  
and by using following parameters: segment length ST = 0.5, population size = 12,  
generation iterations = 12, crossover parameter = 0.9, mutation parameter = 0.03 

 

Figure 15. The results of applying the genetic algorithm in 3D environment with 60 obstacles  
and by using following parameters: segment length ST = 0.5, population size = 20,  
generation iterations = 20, crossover parameter = 0.9, mutation parameter = 0.03 
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CONCLUSION 

This paper offers a comparison between two procedures of 3D navigation to prevent col-
lision of an unmanned vehicle in space. The effectiveness of the two algorithms are defined 
according to computer simulation, and mathematically it is possible to modify the APF algo-
rithm in order to get improvements in the path by adding constraints on motion and adjusting 
the parameters continually in order to get path planning that works in a real time. On the other 
hand, the genetic algorithm is considered ideal; it works in complex dynamic environments 
and does not require prior information about the search field. Due to the experiments, it also 
requires the precise adjustment of the parameters in order to get an ideal path, but it consumes 
processing time because its work is iterative. For applying both algorithms in flying, more 
detailed investigation is required. The following table 1 shows time complexity, work stages, 
and the environments as a comparison between the two algorithms. 

 
Table 1. Time complexity and the environments as a comparison between the two algorithms 

Real-TimeS/D Environment Time Complexity Method 

On-line Static and Dynamic obstacles ( )( ) ( )2logO n n T O n≤ ≤
 

APF 
Sampling-based Algorithm 

Off-line Static and Dynamic obstacles ( )2T O n≥
 

GA 
Bio-inspired Algorithm 
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