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Abstract. The paper discusses robot drives diagnostics and optimal decision-making algorithm accord-

ing to the identifiability criterion based on discrete digital control model. We consider discrete control 

algorithm for quality criterion that minimizes the energy of control and displacement. The optimal 

control algorithm is based on the Riccati equation solving for control system with modified state and 

control matrices. The criteria of observability, controllability and identifiability of robot drives are 

considered as rank function of the extended matrix with measurement matrix. An algorithm is pro-

posed for calculating the criterion for identifiability of nonlinear control system in discrete lineariza-

tion variant is proposed. Decision theory is applied for the robot drives diagnosis. It is suggested or we 

suggest to use identification in terms of mathematical model compliance to object operation results. 

A robot drives control using discrete vector-matrix algorithm involves calculating the state matrix at 

each step. Consequently, the expanded matrix determinant is calculated at each step and is compared 

with some constant that numerically divides the space of state matrices. Therefore, robot drives opera-

tion allows its identification. As the identification algorithm optimality criterion was chosen the opti-

mal decision making criterion in combination with the identifiability criterion for the optimal control 

algorithm by the quadratic form criterion minimum. The vector-matrix model of robot drives in the 

state space is presented, taking into relative account state measuring accuracy of the information-

measuring subsystem of robot drives. The drive model was developed in the Russian software pack-

age “Dynamic Simulation of Technical Systems SimInTech”. It proposed to determine the 

identifiability criterion for practical tasks. The criterion of optimal decision making (threshold) can be 

chosen depending on the a priori data on the loss matrix and the probabilities of the hypothesis about 

the object mathematical model correspondence to the results of operation and the alternative - not 

about the correspondence of the model and experiment. In this paper, the identifiability conditions are 

considered not only in relation to the rank of the extended matrix [C, AC, ...], but also as a condition 

for ensuring the accuracy of the model with respect to the object. It is proposed to model the 

identifiability threshold by exhaustive search of the object states for this model. 

Keywords: identification, diagnostics, robot drives, state space, discrete model, optimal algorithm, 

Riccati equation, Cauchy matrix, Bayes criterion 

INTRODUCTION 

A robot drives work in extreme conditions. An effective diagnostic system is required to 

provide for high reliability robot drives. An optimal algorithm is proposed for deciding on ro-

bot drives identifiability, based on discrete digital control model. The diagnostic process de-
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termines the adequacy of the model applicability to the object. The algorithm is based on cal-

culating the value of the identifiability criterion for discrete non-linear model of robot drives 

in the state space. 

The identification method in the state space has been actively developing over the past 

two decades. P. Eykhoff is one of the first who performed the theoretical identification justifi-

cation, as well as developed algorithms and methods of identification [1, 2]. The works of the 

following authors are devoted to the dynamic systems identification research: D. Graupe [3], 

L. Ljung [4], E. P. Sage and J. L. Melsa [5, 6], and among Russian authors – Ya. Z. Tsypkin 

[7], N. S. Rybman [8], S. E. Steinberg [9] and others. 

R. V. Beard developed a scheme for detecting defects based on observers [10]. 

H. L. Jones continued these studies and developed the Beard-Jones Fault Detection Filter 

[11]. In the 1980s and early 1990s, the main approaches of quantitative diagnostics were de-

veloped: an observer-based approach, a parameter estimation method, etc. Some important 

study in this direction are works of P. M. Frank [12], R. Isermann [13, 14]. Theoretically 

well-substantiated developed techniques are classic diagnostic methods. These techniques are 

based on analytical redundancy, which is a model describing the diagnosed technical system. 

SETTING THE RESEARCH TASK 

A robot drives are represented by nonlinear differential control and observation equations 

in the state space. 

         ,t t t t x A x B u  (1) 

,k k ky C x  

where  tA  is a functional matrix of size n×n, called the matrix of the system (object) state; 

 tB  is a functional matrix of size n×r, called the control (input) matrix;  tC  is a functional 

matrix of size m×n, called the state exit matrix or measurement matrix. 

In general, when at least one of the matrix   ,tA    ,tB   tC  is time dependent, the task 

is nonlinear and has only particular solutions. 

To find the state equation, we represent equations (1) in a discrete form, the discretization 

time t tends to zero, and the trajectory on each discrete segment is linear. We write equations 

(1) in the form 

1 ,k k
k k k k

t

 
 



x x
A x B u  

 ,k k ky C x  (2) 

Multiply the left and right sides of the first equation (2) by t, we get 

 1 ,k k k k k  x A x B u  (3) 

where ,k t  A A E  .k kt B B  

This equation relates the transition of the system from the state kx  to the state 1.kx  On 

the segment t, we take the values of the matrices ,kA  ,kB  and kC  to be constant. Find the 

solution to equation (3). For convenience, we will remove the “wavy line” sign in subsequent 

entries. 
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The quadratic quality functional determining the control and displacement energy is ex-

pressed as follows 

  
0

T T1
,

2

ft

t

I dt  x Qx u Gu  (4) 

where Q ≥ 0 and G > 0 are arbitrarily defined matrices. 

The equation solution (1) for the quality criterion (4), which minimizes the energy of con-

trol and displacement. It is determined by the following expression [15, 16]. 

 1 T , u G B Kx   

 1 , x C y  (5) 

where K is the Cauchy matrix, K = K
T
, which can be found by solving the Riccati equation 

[15]. 

 T T T 1 T ,    K Q A K K A K BG B K   (6) 

where K(tf) = 0. 

Cauchy Matrix: 
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where kij = kji, should be positively defined, since as positive definite matrices Q and G is 

used in the quadratic quality functional (4), which is also positive. 

Matrices Q and G are chosen arbitrary. Matrices Q and G are selected by the assortment 

method, since they are not always possible to obtain a satisfactory solution of equation (5), 

when calculating the control vector u. In [15, 16], it is proposed to select these matrices by 

assortment or simulation. 

Thus, the driver control is carried out by solving (6) according to the model (5) by calcu-

lating at each step the state matrix Ak and the control matrix Bk (3). 

We assume that the matrix 
1 1

k

 C C  at each step k does not change, is determined by the 

information-measuring system, can be represented as 

 

1

21

1 0 0

0 1 0
,

0 0 1 n



   
 

  
 
    
 

  

C  (8) 

where  
T

1 2n n    ξ  is random vector, that reflects the random nature of measure-

ments by the information-measuring system, that is part of the drives [17, 18]. 
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DRIVE IDENTIFICATION 

Consider the issue of identifying drives in terms of analyzing expression (9), where at 

each step of linearization the criterion of identifiability and observability is the rank of the ex-

tended matrix. 

    
2 1

T T T T T T Trank .
n

k k k k k k k n
  

  
C A C A C A C  (9) 

The matrix T

kC  is completely determined by the information-measuring system, that is, 

by relative measurement error or accuracy class. We write the model of information-

measuring system in the form 

 ,k k ky C x  (10) 

or 

 

1 1 1 1

2 2 2 2

1 0 0

0 1 0
,

0 0 1n n n n

y h x

y h x

y h x

       
     

  
     
          
     

       

 (11) 

where 
ih  is the relative measurement error, 

i  is implementation of a normally distributed 

random variable with standard deviation ,
3

i
i

h
   1, .i n  

Then for the maximum downward errors in the worst case for all measuring channels, 

given the continuous and infinite nature of the implementation of a normally distributed ran-

dom variable, assuming that most of the values fall within the interval 3 3 ,i i i       

1, ,i n  we can write approximately 

1

2

1 0 ... 0

0 1 ... 0
.

... ... ... ...

0 0 ... 1

n

n

h

h

h

 
 


 
 
 

 

C  

In our case, the measurement channels are independent and the determinant of the matrix 

will be equal to 

      1 2det 1 1 1 .T

n nh h h    C  (12) 

Open the brackets in (12), exclude the terms of the second and higher order of smallness, 

we get 

 
T

1 2

1

det 1 1 .
n

n n i

i

h h h h


     C  (13) 

If the relative accuracy of all measuring channels is the same ,ih h  1, ,i n  then from 

(13), we get 

 
Tdet 1 .n nh C   

Similarly, for maximum errors in a big way in the worst case for all measuring channels 

we can write 
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 T

1 2

1

det 1 1 .
n

n n i

i

h h h h


     C  (14) 

 
Tdet 1 .n nh C  (15) 

The value of the determinant in (14) and (15) is always greater than one, since the value 

of relative accuracy is always positive, 

0,ih   1, .i n  

Thus, the identifiability condition (10) in the case 

 Tdet 0,
i

k n A  1,i n  

will be the condition 

T

1

det 1 0
n

n i

i

h


  C  

or 

 
1

1.
n

i

i

h


  (16) 

The following is DC motor model in the state space, depending on the accuracy of meas-

uring the state matrix under the assumption that the given path accuracy is no worse than 

10%. Going beyond this value will be considered a loss of identifiability, that is, the model 

does not match the object. 

Figure 1 shows the scheme for calculating the model output parameters at different accu-

racy of measuring the state vector of the DC motor in a vector-matrix form with the “State 

variables” block in the dynamic modeling environment of technical systems SimInTech. 

 

 

Figure 1. DC motor model with a reference and variable measuring matrix 

The simulation results at torque M = 1.91 N, a relative measurement error h1 = 0 (refer-

ence measuring matrix without measurement errors), h2 = 0.1 (measuring matrix in the pres-

ence of a relative measurement error of 0.1) are presented in Fig. 2. 

 



 

“Instrumentation Engineering, Electronics and Telecommunications – 2019” 

Proceedings of the V International Forum (Izhevsk, Russia, November 20–22, 2019) 

110 

 

Figure 2. Simulation results at torque M = 1.91 N, h1 = 0 (reference measuring matrix),  

h2 = 0.1 (variable measuring matrix) 

Fig. 3 shows the dependence of the relative difference in the angular velocities of the ref-

erence model and the model with a modified measurement matrix. 

 

0.00

0.04

0.07

0.10

0.13

0.17

0.20

0.23

0.27

0.31

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
 

Figure 3. Dependence of the relative difference in the angular velocities 

of the reference model and the model with modified observation matrix 

(the abscissa axis is h, the ordinate axis is the relative difference of angular velocities) 

Considering that in many practical problems of managing tasks, the dimensions of prob-

lems do not exceed ten, and the relative accuracy of measurement is equal to units of percent, 

it can be concluded that only the state matrices affect the identifiability 

T ,kA  1, ,k n  

which will ultimately determine the rank of the matrix (9). 
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It is proposed for practical tasks to determine identifiability in the form 

 
Tmin(det ( ) det ( )) γi T
k kn n A C . (17) 

where k is the step number in the nonlinear model; n is the dimension of the model; γ is the 

identifiability criterion chosen by modeling the state matrix for the cases when the parameters 

of matrix A are exited from the space of realizable values of a serviceable system. 

DRIVE DIAGNOSTICS 

Apply the decision theory [19, 20] to the choice of the threshold in (17). Let's write the 

source data for this task: 

– 
0S  is system state corresponding to identifiability; 

– 1S  is system state corresponding to non-identifiability; 

– 
0X  is the space of samples corresponding to condition (17) of the identifiability of the 

system with probability  0 0| ;P x X S  

– 1X  is the sample space corresponding to condition (17) of the system’s non-

identifiability with probability  1 1| ;P x X S  

– q is the probability that the state of the system corresponds to the state 0;S  

– p is an alternative, i.e. p = 1 – q is the probability that the state of the system corre-

sponds to the state 1;S  

– 
0H  is hypothesis about the belonging of the observed vector  

T

1 2, , , nx x x x  to the 

state 0;S  

– 
1H  is hypothesis about the belonging of the observed vector  

T

1 2, , , nx x x x  to the 

state 1;S  

– 0  is the decision to accept the true hypothesis 0H  with probability  0 0| ;P X Sx  

– 1  is the decision to accept the true hypothesis 1H  with probability  1 1| ;P X Sx  

–  0|nW Sx  is conditional density function for samples corresponding to the state 0;S  

–  1|nW Sx  is conditional density function for samples corresponding to the state 1;S  

–  
 

 
0

1

|

|

n

n

W S
l x

W S


x

x
 is likelihood statistics. 

Then if the likelihood statistics 

  
 

 
0

1

|
,

|

n

n

W S
l x c

W S
 

x

x
 (18) 

then we decide 0  on the correctness of the hypothesis 0 ,H  that the observed vector (sample) 

 
T

1 2, , , nx x x x  belongs to the state 0 ,S  i.e. the robot drive is identifiable. Otherwise, the 

likelihood statistics 

  
 

 
0

1

|
,

|

n

n

W S
l x c

W S
 

x

x
 (19) 
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then we decide 
1  on the correctness of the hypothesis 

1,H  that the observed vector (sample) 

 
T

1 2, , , nx x x x  belongs to the state 1S  – the decision on the system’s non-identifiability. 

Optimal decision-making on the selected criterion implies errors:  1 0|P x X S    - deci-

sion making 
1,  although the state was true 

0
S  (error of the first kind) and  0 1|P x X S    - 

decision-making 
0 ,  although the state was true 

0
S  (error of the second kind). 

The threshold c is selected as one of the decision methods. For example, for the Bayes 

method [19, 20], we can record the statistics of the correct decision on the identifiability of 

drives in the form 

 
 

 
01 000

1 10 11

|
,

|

n

n

W S q
l x

W S p


 



 
 

x

x
 

where 00 ,  11,  01,  10  – elements of the loss matrix, and 00 ,  11  are weights 

for correct decisions, and 01,  10  – for erroneous ones. For a simple loss matrix of iden-

tical probabilities p and q [19, 20], we obtain the statistics of the correct decision on the 

identifiability of the system in a simpler form 

 
 

 
0

1

|
1,

|

n

n

W S
l x

W S
 

x

x
 

which meets the maximum likelihood criterion. 

Thus, solving together (17, 18, 19) for a given threshold c, going through all possible 

values  
T

1 2, , , nx x x x  from the space 0 1X X  for all states 
0
S  and 1,S  we obtain the 

value . Note that solution (17) presupposes the dependence of the matrix 
T ,kA  1,k n  on the 

state  
T

1 2, , , nx x x x  and, therefore, it has greater computational complexity of the numer-

ical solution. Considering the universality of the likelihood statistics (18, 19), the criterion of 

optimal decision making (threshold c) can be chosen depending on a priori data on the loss 

matrix and the probabilities of the hypothesis and alternative [19, 20]. 

CONCLUSION 

Currently the development of control algorithms based on discrete models is a very im-

portant task, because almost all tasks of controlling practice of robots drives cannot be accu-

rately represented by linear models and the solution of nonlinear models is generally absent. 

Discrete models of nonlinear systems of the form (3) presuppose variable matrices of state, 

control, and measurement. Matrices are defining an infinite number of the model variants. 

Therefore, some tools are needed to calculate of adequacy degree of mathematical models and 

real objects. This paper presents the optimal algorithm for identifying nonlinear complex sys-

tems based on a discrete digital control model. As the criterion for the optimality of the identi-

fication algorithm was chosen the criterion of optimal decision making in combination with 

the identifiability criterion for the optimal control algorithm by the minimum criterion of the 

quadratic form.  

The paper investigates the influence of the parameters of the measurement matrix on the 

identifiability of the robot drive model based on the DC motor for control and diagnostic 

tasks. 
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It is shown that at a threshold value h>0.2 of the measurement matrix, the difference in 

the angular velocities of the reference model and the model with the modified observation 

matrix is more than 10%, the drive model becomes unidentifiable, which leads to a loss of 

controllability and the inability to diagnose. To study the influence of the measurement matrix 

on the identifiability of the model, a vector-matrix model of the drive in the state space is de-

veloped taking into account viscous friction. 

Identification criteria (16) and (17) allow to determine the models conformity degree to 

the control object by the model of the measuring matrix or by the models combination of the 

state matrix and the measuring matrix.  

The threshold γ in (17) is optimal and is calculated numerically by solving the system of 

inequalities (17, 18, 19). It is possible to require, though it is not necessary, in the criterion 

(16) for the measurement matrix, that the sum of the relative errors be substantially less than 

one. The criterion of optimal decision making (threshold c) can be chosen depending on the 

apriori data by the loss matrix and the probabilities of the hypothesis and the alternative. 

In this paper are new: 

1) the conditions of identifiability are considered not only with respect to the rank of the 

extended matrix [C, AC, …], but also as a condition for ensuring the accuracy of the model 

with respect to the object; 

2) it is proposed to model the identifiability threshold by exhaustive search of the state of 

an object for this model. 
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