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Abstract. This paper concentrates on deriving an inverse kinematics solution of a manipulator at-

tached to an aerial vehicle for real-time applications. Analyzing the vehicle's movement itself is not 

considered. The kinematics solution using Denavit-Hartenberg model was introduced. Adopting the 

resulted forward kinematics equations of the manipulator, the trajectory planning problem turns into 

an optimization task. For solving constrained complicated nonlinear functions, shuffled frog leaping 

search algorithm is suggested to get a global online solution of the design configurations with 

a weighted objective function subject to some constraints. It is a constrained metaheuristic and popu-

lation-based approach. Moreover, it is able to solve the inverse kinematics problem considering the 

mobile platform, in addition to avoiding singularities, since it does not demand the inversion of 

a Jacobian matrix. Simulation experiments have been carried out for the trajectory planning of a six 

degree of freedom aerial manipulator, and the obtained results confirmed the feasibility and effective-

ness of the suggested method. 

Keywords: Inverse Kinematics, Metaheuristics Methods, Evolutionary Algorithms, Optimization 

Techniques, Shuffled Frog Leaping Algorithm 

1. INTRODUCTION 

Metaheuristic optimization algorithms are an encouraging alternative to traditional nu-

merical solution methods of inverse kinematics (IK), when working in real-time and precision 

is required. Furthermore, the linear and dynamic programming techniques usually fail to reach 

local optimum in solving NP-hard problems with a large number of variables and non-linear 

objective functions. This paper focuses on population-based heuristic search methods for op-

timization problems and on memetic algorithms (MAs), where memes propagate themselves 

in the meme pool by leaping from brain to brain via a process that can be called imitation. 

This idea can be applied to a robotic agent to use MAs in resolving its movement in the work-

space. The solution can be achieved by minimizing an objective function allowing the end-

effector to follow the optimal path to avoid singularities and obstacles. A special type of op-

timization algorithm was developed and deployed for the solving the IK of a humanlike ma-

nipulator.  
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Jacobian-based solutions are identified to scale inadequately with the high number of de-

grees of freedom [1], in addition to singularities existence. A comparative study of several 

methods based on the Jacobian matrix [2], clarified that the modified Levenberg-Marquardt 

method is much better for a large set of random configurations, but may lose convergence 

compared to Jacobian transpose and pseudocode inverse methods. For solving real-time IK 

without using the Jacobian matrix, numerical and analytical mathematical tools based on the 

end-effector position were proposed, but without mentioning the solution time consumption 

[3]. A similar method for (2n+1) DoF hyper-redundant manipulator arm was also applied [4]. 

Two methods were combined as a real-time IK solver for a human-like arm manipulator 

based on closed-form analytical equations for a given position [5]. On-line adaptive strategy 

based on Lyapunov stability theory, radial basis function network (RBFN) and quadratic pro-

gramming was proposed, but it requires complex hardware resources [6], the simulation was 

done for the end-effector position in addition to avoid obstacles and was conducted on the  

7-DoF PA-10 robot manipulator. A kinematic and time-optimal trajectory planning was con-

sidered for redundant robots, two approaches were presented, joint space decomposition and 

numerical null-space method for a given pose [7], and were tested by 7-DoF industrial robots, 

but demanded high time consumption for solving the IK problem. Differential evolution (DE) 

was explained and proved as one of the most powerful and versatile global numerical opti-

mizers for non-differential and multimodal problems [8], and requires less time and has more 

robustness in solving the IK problem. Quadratic programming, branching, and a weighted 

multi-objective function that gave a short-time response of seconds were used [9], while com-

parative research of four different heuristic optimization algorithms GA, PSO, QPSO and 

GSA for 4-DoF manipulator in order to reach the target as a position was presented [10]. It 

was proved that Quantum PSO is the best with average execution time of 1.65 seconds. The 

performance of many PSO variants was investigated to resolve two DoF IK problems for 

a given position [11], proving that PSO-VG is the fastest which took less average conver-

gence iterations of 740 for 15 particles. A fitness function was derived and minimized to re-

solve the pose IK problem based on PSO for multiple DoF up to 180 [12], concluding that the 

runtime and iterations are 4.22 seconds and 118 respectively for a 9-DoF. A hybrid method 

called DEMPSO based on DE and Modified PSO algorithms was developed in order to mini-

mize the solution time for the pose, moreover a comparative study for several swarm intelli-

gent optimization algorithms as ABC and ACO algorithms were presented [13]. DEMPSO 

results showed great advantage concerning execution time for reaching the position similar to 

the performance of DE for the orientation aim. The simulation was conducted with population 

size 30 for 10-DoF serial-parallel robot. Comparison of three evolutionary algorithms as GA, 

PSO, and DE was made [14]. A comparative study of IK solvers for a mobile manipulator us-

ing DE algorithm was presented [15], concluding that hybrid DE and biogeography-based op-

timization called HBBO provides good results but a higher computational cost for weighted 

fitness function and pose target. In contrast, DE proved to be superior to PSO, CS, and TLBO, 

additionally verified that the PSO algorithm does not solve the IK problems correctly. A de-

veloped methodology was applied on a six-bar mechanism [16], using DE with the geometric 

centroid of precision positions technique (GCCP). DE was used to improve the design of 

a fuzzy controller for a wall-following hexapod robot [17]. A modified self-adaptive DE was 

proposed [18], in order to improve the static force of humanoids robot, showing robust, safe, 

reliable performance compared with other metaheuristics. An approximation tool for an in-

dustrial robot inverse model based on an adaptive neural model optimized by advanced DE 

was presented [19]. An optimal joint trajectory planning method was proposed using forward 

kinematics of 7-DoF free-floating space robot based on DE method [20], depicting the general 

aspect of equality and inequality constraints which govern each joint in the manipulator. Shuf-
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fled frog-leaping algorithm SFLA was introduced which is a population-based collaborative 

search metaphor inspired by natural memes [21]. The effectiveness, suitability, and global op-

timal resolving have been demonstrated in addition to the short processing time. MSFLA for 

a high dimensional continuous function optimization was proposed [22]. This method yields 

strong robustness and best convergence. A comparative study for PSO, SFLA, MSFLA, and 

MSFLA-EO, designated that MSFLA is better than others, and was assumed for obtaining the 

optimum preventive maintenance scheduling of generating units in power systems [23]. 

A comparative study among five evolutionary-based optimization algorithms GA, MA, PSW, 

ACO, and SFLA was presented [24], showing that SFLA is the best concerning the pro-

cessing time for solving the F8 function. 

In this work, in order to solve the IK of a mobile manipulator the MSFLA algorithm is 

proposed, which is accurate and has fast convergence in discovering the solution [25], and as 

an extension of our work in [26][27][28][29]. Initially, we define an objective function to 

minimize the error between the desired and the actual end-effector pose. The objective func-

tion takes into account the minimal movement between the previous and the actual joint con-

figurations. To overcome the constrained problems, we use a penalty function to penalize all 

those manipulator configurations that violate the allowed joint boundary. Hence, the proposed 

approach estimates the feasible manipulator configuration needed to reach the desired end-

effector pose.  

2. MANIPULATOR KINEMATICS 

The data in Table 1 represent link parameters of the manipulator’s arm-part based on 

Denavit-Hartenberg (DH) convention in two forms: standard and modified. Whereas the 

standard simulation form of LabView Robotics module was used, in order to validate the de-

sign. Where , a, d and  are the joint angle, link length, link offset and link twist between 

joints. While iT  is the homogeneous transformation matrix between the frames that is a func-

tion of   while the other three parameters are constant. The initial values of i  form an input 

to the IK-solver and are important to define the positions of joints of the manipulator in its 

initial state. Joints must have a constant offset distance and a variable rotation angle. 

 
Table 1. Link parameters of the manipulator’s arm-part. 

Standard Denavit Hartenberg 

i  
[cm]ia  

[cm]id  i  
Initial Value 

of i  

2  6.4 0 
1  0 

0 30.2 0 
2  2  

2  0 0 
3  2  

2  0 23.5 
4  0 

2  5.3 0 
5  2  

0 5.6 -2 
6  0 

 

The position of all links of the manipulator’s arm-part can be specified with a set of 6 

joint variables from the shoulder's joints till wrist's joints as shown in Figure 1. This set of 

variables is often referred to as a 6 1  joint vector [25]. The space of all joint variables is re-
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ferred to as the joint-space  1 2 6, , , .
T

       Here we have been concerned with compu-

ting the Cartesian space representation from the knowledge of the joint-space information. 

Hence the homogeneous transformations of the links were used 1 .i

iT
  If the robot's joint-

position sensors are estimated by servo-mechanisms, the Cartesian position and orientation of 

the hand-part can be computed by 07T  [25]. 

 

 

Figure 1. Sketch of the outer shape of the manipulator including its joints and links. It has seven links 

and six revolute joints in arm-part while the last part is considered as an end-effector of the manipula-

tor and contains 5 fingers. Each joint represents a single DOF 

3. PROPOSED OPTIMIZATION TECHNIQUES FOR SOLVING KINEMATICS 

The evolutionary optimization algorithms can solve the complicated nonlinear equations 

completely and efficiently. The solution of the IK for the manipulator is a very difficult prob-

lem to obtain by traditional approaches. Besides, the suggested strategies do not require the 

inversion of any Jacobian matrix, and then it avoids singularities configurations. In this paper, 

to optimize this problem, the MSFL algorithms is used. This optimization technique is based 

on the forward kinematics equations, which always produces a solution in cooperation with an 

objective function. Hence, the general aspect of the problem can be expressed as minimizing 

  ,J   constrained by 
min max .   Furthermore, the objective function could be defined 

as the weighted sum of the errors as follows: 

         - ,error error G E G EJ P O P P O O             

where  errorP   and  errorO   represent the position and orientation errors respectively and 

could be computed as a difference in distance between the target and current position, in this 

work we used an Euclidean formula as a representation of distance. While the parameters  

and  are the weights of the position and the orientation, respectively. Let  ,G GG P O  be 

a given target end-effector pose while       ,E EE P O     is the current end-effector 

pose in the workspace corresponding to configuration  1 2 6, , ,
T

       which can be cal-

culated using forward kinematics, where P refers to the 3D position vector of pose while 

O refers to the vector of Roll-Pitch-Yaw Euler angles of pose (in radians), respectively. 

Which the optimization algorithms are exploring directly in the configuration space of the 

manipulator. Each individual 
,1 ,2 , ,6,

T

i i i i j i
         represents an i

th
 candidate set of 

joint angles. At each iteration, we evaluate each candidate configuration i  by passing it 
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through the forward kinematics module and measuring the position and orientation error be-

tween where the end-effector would be at configuration i  and the target end-effector pose. 

In order to enforce joint limits, each dimension j of element i  should be limited to searching 

in the range of valid joint angles  min max, .i     This can be realized by clamping each di-

mension j  within these bounds at each iteration immediately after it is updated. 

4. MODIFIED SHUFFLED FROG-LEAPING ALGORITHM 

The SFLA algorithm is inspired by the memetic evolution of frogs exploring food in 

a lake, which consolidates the benefits of the genetic-based MAs and by the social behavior-

based particle swarm optimization [21]. SFLA incorporates: firstly, the evolution process on 

each memeplex that embraces different cultures of frogs, where the culture stimulates a fit-

ness value, and serves as a local search within memeplex analogous to PSO algorithm, which 

imitates the social behavior of the leaping action of frogs searching for food. Secondly the 

influence by the ideas of other frogs from other memeplexes throughout the shuffling rule. 

This animates the cooperation process which it implies an adaptation idea and improves the 

success rate of discovering the solution in the optimization puzzle. In this process, a modifica-

tion was applied to the frog-leaping action that enhances the exploration manner in the space 

[22][23]. The randomization strategy in the evolution process offers the algorithm the ability 

to discover the local best solution within search space stochastically in addition to the com-

munication process that possibly finds a global optimum solution in shorter time. The local 

search and the shuffling processes continue until the defined convergence criteria are satis-

fied. The pseudocode of the algorithm is presented in Algorithm 1. 

 
Algorithm 1. The pseudo-code of the Shuffled Frog-Leaping Algorithm 

Initialization: 

 1 2, , , , , ;

;

;

1,

( )

i NPPopulation

m number of memeplexes

n quantity of frogs in each memeplex

l iN

while convergence criteria is satisfied Or until met iN do

      







 

Rank Step: Evaluate each frog i  using a fitness function; 

Partition Step:  

Construct an array U of frogs and their fitness’s values; 

Sort the array U in descending order based on the fitness column; 

Construct ( ; 1, , )kY k m   memeplexes each including n frogs; 

Evaluation Step: 

1,for iM do  

1,for k m do  

Determine the worst and best frogs position based on their fitness’s values; 

Improve the worst frog position using a leaping distance; 

end for  

end for  

Shuffle Memeplexes Step: combine the evolved memeplexes; 

Check Convergence: Update the population best frog’s position ;g  

1;   

end while  
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The MSFLA meta-heuristic strategy is summarized in the following steps: 

a. Initialization: construct the population NP of frogs randomly similar to the first step in 

DE algorithm, then Select m, and n, where m is the number of memeplexes and n is the num-

ber of frogs in each memeplex. The total amount of frogs NP can be calculated as . ,NP m n  

additionally, the i
th

 frog is expressed as a vector with a dimension equal to the configuration 

space as follows:  ,1 ,2 ,6, , , ; 1,2, , .i i i i i NP         

b. Rank: compute the performance value 
if  for each frog .i  Sort the NP frogs in a de-

scending order according to their fitness. Save them in an array:  , ; 1, 2, , ,i iU f i NP     

so that 1i   denotes the frog with the best performance value and could save it as a g  in 

each iteration while the algorithm is running. 

c. Partition: partition array U into m memeplexes 
1 2, , , ,mY Y Y  each including n frogs, 

such that: 
     1 1

[ , | , , 1, , ]; 1, , .k k k k k

i i i ik m i k m i
Y f f f i n k m

   
           In this pro-

cess, the first frog goes to the first memeplex, the second frog goes to the second memeplex, 

frog m goes to the m
th

 memeplex, and frog 1m  goes back to the first memeplex, etc.  

d. Memetic Evaluation: evolve each memeplex ; 1, ,kY k m   according to the frog-

leaping algorithm as follow. Within each memeplex, the frogs with the best and the worst fit-

ness values are defined as b  and .w  The frog with the global best fitness is defined as ,g  

then, an improvement process is applied only to the frog with worst fitness in each cycle. 

Hence, the position of the frog with the worst fitness is modified which emulates the leaping 

process as follows: leaping distance   rand 0,1 ,L b wD C    then new position 

max max; ] , [.w w D D D D      Where,  rand 0,1  is a random number between 0 and 1, 

maxD  is the maximum allowed change in a frog’s position and LC  is the modification of the 

algorithm which it is a constant indicates the amount of frog-leaping in each memeplex. The 

evaluation process, for all memeplexes, is repeated by an adaptable number of iterations ,iM  

until no improvement becomes possible. 

e. Shuffle Memeplexes: shuffle frogs and replace all memeplexes ; 1, ,kY k m   into U, 

such that  , ; 1, 2, ,i iU f i NP     similar to the initialization phase, afterwards sort U in 

order to decrease the performance value, update the population best frog’s position .g  

f. Check convergence: if the convergence criteria is satisfied then stop otherwise return 

to the partition step and continue for a specific quantity of iterations iN.  

After each iteration the first frog in the sorted list represents a global solution. The num-

ber of iterations iM specifies the search depth within memeplexes while iN governs the solu-

tion producing process. 

5. SIMULATION RESULTS 

The IK of a redundant manipulator with six joints to follow a destination pose was 

solved. The manipulator’s joints correspond to the variable : 1,2, , 6j j    are constrained. 

In the IK experiments, the desired end-effector pose for the manipulator’s arm-part was de-

termined by this vector      , , , , , , 20,3,40,0,10,15 .G GG P O x y z roll pitch yaw     The 

parameters of the objective function were adjusted as follows 1 0.7,     so there is a bal-

ance between position and orientation to be optimized. In case of MSFLA, the parameters of 
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the algorithm were introduced in Table 2, and a summary of the results of utilizing the algo-

rithm for multiple scenarios was introduced in Table 3. These experiments are carried out to 

show all possibilities of the MSFL algorithm with variations in the number of iterations and in 

the population size. The purpose is to show the relationship between error and execution time 

with relation to iterations and population then to adapt the algorithm to take more optimum 

solution. An execution time of 729 ms for a human-like robotic arm with 6 joints is good for 

this type of Metaheuristic algorithm to make a comparison with those methods and algorithms 

used by other researchers that were mentioned above in the introduction.  

Figure 2 shows the values of the objective function. 

 
Table 2. Setting of the MSFL Algorithm. 

m Number of memeplexes 3 

n Number of frogs within memeplexes NP m  

LC

 

Amount of Leaping 1.3 

 
Table 3. Inverse Kinematics Results of MSFL Algorithm 

Tests Population 
Iterations 

 J   
Total 
Error 

Execution 
Time [ms] 

Reaching Target 

 , , , , ,x y z roll pitch yaw  iN iM 

1 20 30 10 11.618 29.71 729 ( 15.7365,5.43,52.57,6.63,12.66,16.164)  

2 30 30 10 7.6614 12.08 1045 ( 21.183,2.915,50.77, 0.201,10.01,14.85)   

3 40 30 15 10.5382 19.21 1685 ( 25.08,8.56,46.818, 6.2,9.6,5.4251)   

4 40 40 30 18.4625 18.46 4526 ( 25.23,8.34,47.59, 2.53,8.62,14.13)   

5 60 40 30 8.2925 8.292 6645 ( 24.46,0.0421,44.59,1.65,11.116,14.05)  

6 80 50 40 11.024 11.02 13540 ( 26.998,3.594,42.87, 0.068,9.81,15.67)   

7 100 60 60 29.774 29.77 24191 ( 20.03,30.039,39.971, 7.71,3.679, 0.72)    

8 130 70 60 0.1511 0.649 46282 ( 20.09,2.99,40.004,0.208,9.64,14.89)  

9 170 60 50 0.6168 2.168 40459 ( 20.151,2.84,40.09,0.89,10.36,16.15)  

10 200 90 40 0.1139 0.298 57362 ( 19.927,3.0072,39.98, 0.134,10.105,14.89)   

11 200 100 60 0.0729 0.378 92779 ( 20.002,2.998,39.99, 0.137,10.151,14.92)   

12 200 120 80 2.7672 5.8164 150246 ( 20.48,4.153,40.49,0.807,4.087,13.787)  

13 200 200 100 2.6713 1.9339 318481 ( 19.27,2.235,41.94, 0.979,10.88,11.48)   

14 250 90 40 0.003 0.016 69818 ( 19.99,3.00023,39.99,0.0049,10.006,14.99)  

15 250 140 80 1.266 6.553 215027 ( 20,3,40, 7.01976 10,10,15)e    

16 250 140 100 4.647e-9 1.05e-8 260325 ( 20.09,2.97,40.0008, 1.687,6.689,13.57)   

17 300 140 80 1.01e-9 3.33e-9 255989 ( 20,3,40,1.16487 9,10,15)e   

18 500 90 40 5.49e-10 9.9e-10 136888 ( 20,3,40, 1.66261 11,10,15)e    

19 500 200 100 3.02e-15 1.56e-14 681646 ( 20,3,40,3.22962 15,10,15)e   

20 1000 30 45 0.0968 0.025 95197 ( 20.031,3.04,40.04, 0.0037,10.96,14.876)   

 

The position and orientation of the manipulator’s end-effector after applying the solutions 

to validate the IK solver are presented in Figure 3 and Figure 4, while the joints’ positions of 

the manipulator in Figure 5. 
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Figure 2. The values of the objective function 

after applying IK-MSFLA solver 

Figure 3. The position of end-effector for the 

manipulator after applying the solutions to vali-

date IK-MSFLA solver 

  

Figure 4. The orientation of the manipulator’s 

end-effector after applying the solutions to vali-

date IK-MSFLA solver 

Figure 5. The joints’ positions of the manipula-

tor after applying the solutions to validate IK-

MSFLA solver 

Preliminary tests have been carried out in the laboratory for investigating the perfor-

mance of the algorithms in addition to analyzing the response, stability, robustness, and 

smooth motion of the manipulator. The experiments consisted of the execution of various tra-

jectories with the manipulator as shown in Figure 6. 

 

    

Figure 6. Inverse kinematics tests of a human-like manipulator prototype. It is a lightweight manipula-

tor of 1.1 kg, it has a range of 85 cm in the workspace and a maximal payload of 0.2 kg. The length of 

the robot in the stretching state is 1.04 m 
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Figure 7 presents the real-time data from the manipulator plus the platform. 
 

 

Figure 7. Real-time measurements from the manipulator and the platform, there are configurations  

of the joints’ manipulator, coordinates of the hand, configurations of the fingers and finally the dis-

turbances 

6. CONCLUSION 

In comparison with other researchers work, the inverse kinematics of a human-like six 

joints manipulator to follow a certain pose was solved. The modified shuffled frog-leaping 

algorithm was used and the parameters of the objective function to be optimized were adjust-

ed to have balance between position and orientation. It was obvious that the execution time 

depends on both the population size and the iterations. The population size achieves the diver-

sity feature, which allows the algorithm to explore more solutions in the workspace while the 

high iteration gives a solution much closer to the target. The IK solver was validated. Each 

new solution is considered as a global solution within its iteration, and it grants the algorithm 

the ability to explore new global solution. Therefore, it is important to alter the settings of the 

DE algorithm to get a solution based on the objective function in shorter time. The adaptation 

of the algorithm parameters nearby the setting point may improve the solution to be more fit-

ting but with longer convergence time. The obtained results confirmed the feasibility and ef-

fectiveness of the suggested method. 

This research is funded by Kalashnikov Izhevsk State Technical University grant 15.06.01/18ААИ. 
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