
 

J. David, A. Martikkala, A. Lobov, M. Lanz 

“A unified ontology namespace for enterprise integration – a digital twin case study” 

13 

DOI: 10.22213/2658-3658-2019-13-22 

A Unified Ontology Namespace 

for Enterprise Integration – a Digital Twin Case Study 

Joe David
 1
, Antti Martikkala

 1
, Andrei Lobov

 1, 2
, Minna Lanz

 1
 

1 
Automation Technology and Mechanical Engineering Unit, Tampere University, Tampere, Finland 

E-mail: {joe.david, andrei.lobov, minna.lanz}@tuni.fi 
2
 Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 

Trondheim, Norway 

E-mail: andrei.lobov@ntnu.no 

Received: July 25, 2019 

Abstract. In order to be able to scale business enterprises and digitally transform them, we need to be 

able to readily integrate business data. Traditional systems have business data travelling through dif-

ferent layers of the automation stack vertically. This study presents an architecture that employs a uni-

fied ontology namespace for integration of business data. Such an architecture is thought to enhance 

transparency and visibility easing integrations. A use-case exploiting such an architecture with 

webservices is presented to convey the ease at which different applications, such as a digital twin, can 

be “plugged in” to realize further business potential of enterprises. 

Keywords: ontology, ERP, MES, PLM, digital twins, enterprise, web services, REST, SOAP, 

SPARQL 

INTRODUCTION 

Product Lifecycle Management (PLM), Enterprise Resource Planning (ERP) and Manu-

facturing Execution Systems (MES) have been the cornerstones of many (manufacturing) in-

dustries for decades but they have traditionally functioned as distinct and disparate systems 

coupled by means of proprietary protocols that prevent data from freely flowing across them. 

In order to obtain the best product in each level of the stack, often enterprises make use of dif-

ferent vendors at each level that have been implemented in completely different platforms and 

their convergence would generally take place only by means of software API integration done 

by software experts. 

Fig. 1 shows the automation pyramid based on the standard that depicts the various level 

of automation in a factory. It constitutes of the following levels: 

– Level 0 is the field level contains the field devices, i.e. sensors that senses an event or 

measures one or more input variables and actuators that manipulate variables. 

– Level 1 is the control level that consists of programmable logic controllers (PLCs) or 

distributed control systems (DCS). They take in the information from the field layer to act up-

on them, make decisions based on programmed logic and pass back the outputs to the field 

layer. 

                                                           

 © J. David, A. Martikkala, A. Lobov, M. Lanz, 2019 



 

“Instrumentation Engineering, Electronics and Telecommunications – 2019” 

Proceedings of the V International Forum (Izhevsk, Russia, November 20–22, 2019) 

14 

– Level 2 is the supervisory level that primarily uses supervisory control and data acqui-

sition (SCADA) systems and other human machine interfaces (HMIs). Operators make use of 

these systems to monitor and control process data which may be stored in databases. 

– Level 3 is the planning level that constitutes mainly of the manufacturing execution 

systems (MES) that monitors the manufacturing processes in the plant that transforms prod-

ucts from its raw form to finished goods. 

– Level 4 is the business planning and logistics level that comprises mainly of the enter-

prise resource planning (ERP) systems that is a suite of computer applications to monitor 

business processes such as purchasing, sales, finance and payroll among others. 

 

 

Figure 1. The Automation Pyramid 

Integration in automation can take place along three directions, namely horizontal, verti-

cal and temporal (longitudinal) (Sauter, 2005).  Horizontal integration refers to the integration 

that takes place within each level (intra-level), vertical integration takes place along different 

levels (inter-level) and temporal integration takes place along the lifecycle of the plant. 

To attain the holy grail of tri-system integration (PLM, ERP, MES), this paper envisions 

an architecture that publishes information from each of the layers of the pyramid to common 

unified knowledge base. Although the architecture allows for horizontal and vertical integra-

tion, the focus of the study is on temporal integration. Temporal integration refers to the 

changes that the automation system undergoes during its life-cycle. The different phases of 

the life-cycle include design, engineering, commissioning, operation and maintenance. Specif-

ically, we look into reconfiguration of the automation system during operation as a use case. 

The unified architecture is expected to facilitate data sharing between constituent systems to 

offer visibility that would help eliminate redundant processes and waste, reduce product de-

livery times and ensure optimal overall running of the plant.  

The remainder of the paper is structured as follows. The next section presents a back-

ground on the technologies underpinning the approach undertaken in the study and related 

work. The approach presents the conceptual architecture. A use-case where a digital twin for 

PLM is developed for a system that is developed based on the approach is discussed in the 

case study section. Discussions take place in the subsequent section and are followed by 

a conclusion where future work is presented. 



 

J. David, A. Martikkala, A. Lobov, M. Lanz 

“A unified ontology namespace for enterprise integration – a digital twin case study” 

15 

BACKGROUND AND RELATED WORK 

Work undertaken in this study revolves around two main technologies, web services that 

expose functionalities of applications as services and ontologies by means of which the do-

main knowledge or the current state of the system is represented. In this paper, the term web 

services is used loosely and does not necessarily mean connected to web, although this may 

be the case. It is used synonymous to Application Programming Interface (API) and is used to 

connote a medium of communication. Clarifying further, applications can make use of the 

service-oriented architecture using HypeTtext Transfer Protocol (HTTP) in local area net-

works without be connected to the World Wide Web. 

Technologies 

Webservices 

A Web service is “software system designed to support interoperable machine-to-

machine interaction over a network”(“Web Services Glossary § Web service, W3C,” 

2004).Such a generic definition allows for REST architectures to be seen as one and conse-

quently we look into two dominant paradigms in service oriented architectures, REST and the 

simple object access protocol (SOAP).  

SOAP interactions occur with data in the XML format. SOAP web service descriptions 

are expressed using WSDL, an XML-based standard used to publish service descriptions us-

ing ports (service address), port types (operations that can be performed) and bindings (proto-

col used) (Gudgin et al., 2007). Universal Description, Discovery, and Integration (UDDI) is 

a standard for describing, publishing and discovering these services. 

REST is the abbreviation for representational state transfer. A REST(ful) service is one 

that is built on a REST architecture that stipulates six architectural constraints (Fielding & 

Taylor, 2002):  Uniform Interface, Stateless, Cacheable, Client-Server, Layered and Code-on-

Demand. REST makes use of create, read update and delete (CRUD) operations using HTTP 

verbs typically on HTTP protocol. Web Application Description Language (WADL) (Haldey, 

2009) is typically used to describe RESTful services . 

Thus, while SOAP is a protocol that is formally defined using official web standards de-

veloped by the World Wide Web Consortium (W3C), a REST service is an architectural style 

that needs to be followed in order to qualify as a REST service. SOAP uses XML while REST 

can use a variety of formats including JSON, HTML, XML, etc. As such, SOAP requires 

more resources and bandwidth, while REST is rather lightweight and requires fewer re-

sources. While SOAP services are mainly function driven, i.e. used for the transfer of struc-

tured information, REST services are mainly data driven and used for accessing a resource for 

data. As far as security of exchanged information is concerned, REST inherits the security 

features from the underlying transport protocol (HTTP(S)), while SOAP benefits from its own 

message level security via the WS-Security standard. Thus, REST offers only a faster point-

to-point security while the data is being exchanged over the wire while SOAP offers a reliable 

end-to-end security. 

When choosing between the two for a business application the following may be consid-

ered: 

 Complexity: REST is to be used for simpler and faster access to a resource. SOAP’s 

application is different in the sense that it is used mostly when maintaining open stateful con-

nections with a complex client is necessary. REST transactions are stateless and independent 

of each other. 



 

“Instrumentation Engineering, Electronics and Telecommunications – 2019” 

Proceedings of the V International Forum (Izhevsk, Russia, November 20–22, 2019) 

16 

 Data formats: REST services can make use of data in various formats including 

JSON, CSV, XML, etc. while SOAP is limited to XML. XML is verbose and is less easy to 

parse than JSON or CSV and can accumulate on computation costs. 

 Standardization and Security: If standardization is key, SOAP offers support for 

Web Services specifications. As for security, both support Secure Sockets Layer for point to 

point protection but SOAP offers WS-Security for end-to-end enterprise level protection.\\ 

 Legacy applications: Legacy systems are another argument in favour of SOAP. 

REST have gained popularity in recent times and many applications may still have only an 

implemented SOAP API. 

Thus, it can be said that both REST and SOAP make use of different semantics and for-

mat to provide similar functionality and operate with separate security concerns. 

Ontologies 

Ontologies originated in research areas of metaphysics where philosophers used to de-

scribe the existence and nature of reality. A simple definition of ontology is that of Agarwal 

(2005) who states that “an ontology is, therefore, the manifestation of a shared understanding 

of a domain that is agreed between a number of agents and such agreement facilitates accurate 

and effective communications of meaning, which in turn leads to other benefits such as inter-

operability, reuse and sharing”. 

The rise of the semantic web has seen the emergence of ontology markup languages 

based on XML, of which Web Ontology Language (OWL), a W3C recommendation (“OWL - 

Semantic Web Standards”), is the most prominent. Ontologies have since been pursued by 

many, in various fields and domains to simplify and represent complex, unstructured and het-

erogeneous information as will be seen in the following section. 

Related Work 

Existing literature referring to ontology as a representation of manufacturing domain 

knowledge is plentiful. Specifically for enterprise integration that includes work of Zoubeidi, 

Kazar, Mesbahi, & Benharzallah, (2014) which presents an architecture towards integration of 

Enterprise Resource Planning systems (ERP) with a focus on semantic integration based on 

the context of use. The PABADIS’PROMISE (Diep, Alexakos, & Wagner, 2007) project 

deals with heterogeneity in a manufacturing environment and presents an interoperability 

framework based on ontology. Kalogeras, Gialelis, Alexakos, Georgoudakis, & Koubias 

(2006) present an architecture for vertical integration of the enterprise by using workflows to 

represent enterprise processes. 

Different approaches to formalizing ontologies can be found as well. Nach & Lejeune, 

(2008) present an ontology that supports the ERPs for SMEs. A generic ontology for re-

sources in an enterprise formulated from competency questions have has been presented by 

(Fadel, Fox, & Gruninger, 2002). MASON, a manufacturing upper ontology has been pre-

sented by Lemaignan, Siadat, Dantan, & Semenenko (2006). 

APPROACH 

The automation pyramid presented in the previous section saw a tightly coupled stack of 

applications that only interacted with applications in the adjacent layers. If for some reason 

we have to diverge from the traditional flow of information, say for example that we need 

some information from the ERP system to alert the operators at the SCADA layer, this would 



 

J. David, A. Martikkala, A. Lobov, M. Lanz 

“A unified ontology namespace for enterprise integration – a digital twin case study” 

17 

have to flow through the MES system. This would require integrations at both the ERP-MES 

level and the MES-SCADA level. It is clear to see how the existing architecture is subopti-

mal. If we consider another scenario, where one would like to deploy an application that 

would use data from different layers of the stack, this would mean making discrete connec-

tions from distinct applications on disparate platforms, which is both time consuming and re-

quires expert intervention. 

Topology 

Fig. 2 shows the conceptual architecture of the approach taken in this study. It consists of 

the systems that constitute the automation pyramid in Fig. 1. However, it takes the form of a 

star topology as opposed to the vertical stack. The central component is the domain ontology 

that each of the systems update to maintain a comprehensive updated knowledge model of the 

plant.  

 

 

Figure 2. Conceptual Architecture 

Discrete connections may still exist between these systems. For example, time critical 

applications may necessitate discrete connections from the field sensors and the control layer 

for real-time decision making based on programmed logic. This could be via any industrial 

(fieldbus) protocols, Profibus for example. 

In some cases, especially in the case of legacy systems, the domain ontology acts as 

a knowledge base in addition to the existing vertical stack and does not replace it. This can be 

thought of as a generalization of the first point. 

Information Interchange 

Interaction of heterogeneous systems on disparate platforms requires standardized inter-

faces that foster information exchange between them and the unified knowledge base. Web 

services for long have provided just this interoperability is an obvious choice in the undertak-

en approach. There are mainly two kind of web services; web services that employs the sim-

ple object access protocol (SOAP) and RESTful web services, the relevant details of which 

was discussed in the previous section. We make use of both depending on the application re-

quirements. 

SOAP is to be used for applications where security is of prime importance or in cases 

where the endpoint under consideration is already implemented in SOAP. These include ap-

plications at the enterprise level such as payment gateways in financial services, customer re-



 

“Instrumentation Engineering, Electronics and Telecommunications – 2019” 

Proceedings of the V International Forum (Izhevsk, Russia, November 20–22, 2019) 

18 

lationship management (CRM) systems, etc. REST is to be used for applications where effi-

ciency involving a lightweight architecture is needed or where the endpoint of the application 

is a RESTful one. This would be in the case of field devices, or devices in the control (PLCs) 

and supervisory layer (SCADA Systems). 

Knowledge Representation 

Domain knowledge is represented using ontologies introduced in the earlier section. 

Fig. 3 shows the relationships between classes (entities) in the ontology. They are associated 

by means of need-feed relationships that exist between them. Here the relationship need takes 

the meaning of requires while feed relationships can be viewed as supply with or produces. 

The Resource entity: A resource is any ob-

ject that plays a role with respect to an activity 

(Fadel et al., 2002). As such, resources could 

be equipments such as work centers that pro-

cess products, humans that perform activities 

that require human intervention such as load-

ing of pallets, maintenance, electricity required 

to operate equipments, etc. 

The product entity: A product is the 

produce of the production system or line 

obtained via the transformation of raw goods. 

The process entity: The transformation of 

raw goods to products takes place by the 

means of processes. The ontology developed is available online
1
. It must be noted that object 

and data property axioms are included for illustrtation purposes only. Those axioms are 

automatically created during runtime depending on the response from the production systems 

during runtime. 

USE CASE – DIGITAL TWIN FOR PLM 

This section presents an example of a use-case that utilizes the architecture described in 

the section III. The use-case is that of a digital twin of a production system that interacts with 

the domain knowledge to facilitate product lifecycle management functions. 

Architecture 

The conceptual architecture of the use-case is depicted in Fig. 4. It consists of a produc-

tion system interfaced with a RESTful interface and its description which is stored in 

a WADL document that is made available for necessary integrations. A knowledge broker 

exists which acts as an intermediary between the source of the information in the production 

system and its ontological representation as the domain knowledge and consists of a web ser-

vice discovery component and an ontology broker. It performs two basic functions: (1) Trans-

lation and transformation of necessary knowledge to be stored in the unified ontology 

namespace and (2) Discovery of web services to be able to perform the previous function. The 

knowledge base is developed in OWL remains synchronized with the current state of the pro-

duction system with the help of the knowledge broker. The digital twin utilizes a SPARQL 

wrapper to query the knowledge base. 

                                                           
1 https://github.com/joedavid91/unifiednamespace 

 

Figure 3. Relationship between entities  

constituting the ontology 

https://github.com/joedavid91/unifiednamespace


 

J. David, A. Martikkala, A. Lobov, M. Lanz 

“A unified ontology namespace for enterprise integration – a digital twin case study” 

19 

 

Figure 4. Realized Digital Twin Architecture 

Implementation 

The production line is that of a Flexible Manufacturing System (FMS), the specifics of 

which are introduced in an earlier work (David, Lobov, & Lanz, 2018). The system consists 

of components typical of an FM system such as machining centers, loading and material sta-

tions, washing machines, crane and its associated storage. The knowledge broker is a software 

component developed in python using libraries urlib2 for the restful requests, rdflib to express 

the information in RDF, wadllib for the discovery of services. The knowledge base is devel-

oped using Protégé, an open source ontology editor and expressed in the Resource Descrip-

tion Framework. The domain knowledge can either exist as a file or can be served via HTTP 

via a Jena Fuseki Server implementing a SPARQL endpoint.  The digital twin is developed 

using the software Visual Components, a leading developer of 3D simulation software for 

manufacturing. One of key concepts underlying the development of the digital twin is the sep-

aration of concerns by developing modular components. Each of the components exist inde-

pendently and have a description of itself that is made available by its manufacturer in the 

XML format. The description contains all specifications of the component and describes it in 

its entirety. For example, a machining centre has information such as the PLC parameters, 

Pallet Changer parameters, Address parameters, Tool parameters, NC program parameters 

among a lot of others. The digital twin uses these specs from the domain knowledge to initial-

ize the components in its 3D world. The digital twin behaviors are also implemented in py-

thon in Visual Components and makes use of the SPARQLWrapper python library to be able 

to query the domain knowledge. Thus, although the knowledge is centralized the intelligence 

is distributed. 

Case Study 

As a particular scenario, we examine a case that allows for automatic re-configuration of 

production systems during commissioning and operation and demonstrate how the architec-



 

“Instrumentation Engineering, Electronics and Telecommunications – 2019” 

Proceedings of the V International Forum (Izhevsk, Russia, November 20–22, 2019) 

20 

ture envisioned in the earlier section allows for it. It must be noted that, the intention is not to 

deal with spontaneous dynamic networks at the protocol level but show that the digital twin 

can make use of such an architecture to incorporate dynamic networks. 

The devices registered in the production line are made available in a device discovery 

API exposed through the REST interface. This service is discovered by the WS discovery 

component of the knowledge broker and the domain knowledge is updated accordingly. 

Fig. 5a shows the REST request and response from a third-party REST client. Similarly, the 

location coordinates of the devices are made available in a device data API exposed through 

the REST interface which is updated in the domain knowledge via the knowledge broker. The 

domain knowledge that exists in the resource description (RDF) format is updated by the 

knowledge broker simultaneously (Fig. 5b). The knowledge base in itself can be considered as 

a “raw” digital twin with potent information. The digital twin queries the domain knowledge 

base via SPARQL, an RDF query language. A sample query that initializes the components of 

the digital twin and locates them in the layout is shown in Fig. 5c. The digital twin (Fig. 6) 

makes use of this and a host of other information in the same manner to function and provide 

value to the entire business enterprise. 

 

 

Figure 5. (a) Example RESTful information exchanged between Knowledge Broker and Production 

System (b) Machining Centre Description stored in RDF format in the Domain Ontology (c) SPARQL 

query to obtain coordinates of the devices in the production system 

 

Figure 6. Digital Twin 



 

J. David, A. Martikkala, A. Lobov, M. Lanz 

“A unified ontology namespace for enterprise integration – a digital twin case study” 

21 

DISCUSSION AND CONCLUSION 

As the digitalization of the manufacturing enterprises gains momentum, the integration of 

its systems is considered to play a crucial role. By closing the loop between the ERP, MES 

and PLM the domain knowledge facilitates just this and the central repertoire of domain 

knowledge offers visibility and access that would help streamline manufacturing operations 

and help reduce redundant communication. 

The use case presented a digital twin that exploits the architecture presented in the ap-

proach section.  The use of an ontology expressed in OWL to represent domain knowledge 

can be justified by the fact that it offers high level of expressivity while allowing to model 

complex constructs typical of manufacturing systems. Inference of new knowledge (not in 

use-case) based on existing knowledge can also take place via inference engines using rule 

languages such as SWRL. Serializing it as RDF/XML helps existing and inferred knowledge 

to be queried by query languages such as SPARQL. The use of webservices further helps en-

capsulate business functionality while taking care of security concerns.   

Moreover, such an architecture can have several other advantages. It provides scalability. 

As the physical asset scales, only the description of the services needs to be added or modi-

fied. If the scaling involves just increase in the quantity of existing components, the architec-

ture allows for automatic discovery and updation in the domain knowledge. The knowledge 

broker further allows for easy access of all information stored in the knowledge base to any 

administrator or other users such as customers or suppliers. 

With the data going vertically from the business planning and logistics system, to the 

field level we miss a big opportunity. Rather having a unified namespace for data across 

a common data model simplifies scalability and eliminates one-off integrations. Being able to 

“plug-in” applications and allowing applications to consumer necessary data greatly enhances 

the factories ability to adapt to change and maintenance, a key necessity for the factory of to-

morrow. 

REFERENCES 

 1. Agarwal, P. (2005). Ontological considerations in GIScience. International Journal of Geographical In-

formation Science, 19(5), 501–536. doi: 10.1080/13658810500032321. 

 2. David, J., Lobov, A., & Lanz, M. (2018). Leveraging digital twins for assisted learning of flexible manu-

facturing systems. In: 2018 IEEE 16th International Conference on Industrial Informatics (INDIN) (pp. 

529–535). doi: 10.1109/INDIN.2018.8472083. 

 3. Diep, D., Alexakos, C., & Wagner, T. (2007). An ontology-based interoperability framework for distribut-

ed manufacturing control. In: IEEE International Conference on Emerging Technologies and Factory Au-

tomation, ETFA (pp. 855–862). doi: 10.1109/EFTA.2007.4416869. 

 4. Fadel, F. G., Fox, M. S., & Gruninger, M. (2002). A generic enterprise resource ontology. In: Proceedings 

of 3rd IEEE Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises (pp. 117–

128). doi: 10.1109/enabl.1994.330496. 

 5. Fielding, R. T., & Taylor, R. N. (2002). Principled design of the modern Web architecture. ACM Transac-

tions on Internet Technology, 2(2), 115–150. doi: 10.1145/514183.514185. 

 6. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J., Nielsen, H. F., Karmarkar, A., & Lafon, Y. 

(2007). SOAP Version 1.2 Part 1: Messaging Framework (Second Edition). Retrieved July 22, 2019, from 

https://www.w3.org/TR/soap12-part1/ 

 7. Haldey, M. (2009). Web Application Description Language: W3C Member Submission 31 August 2009. 

Retrieved from https://www.w3.org/Submission/wadl/ 

https://doi.org/10.1080/13658810500032321
https://doi.org/10.1109/INDIN.2018.8472083
https://doi.org/10.1109/EFTA.2007.4416869
https://doi.org/10.1109/enabl.1994.330496
https://doi.org/10.1145/514183.514185
https://www.w3.org/TR/soap12-part1/
https://www.w3.org/Submission/wadl/


 

“Instrumentation Engineering, Electronics and Telecommunications – 2019” 

Proceedings of the V International Forum (Izhevsk, Russia, November 20–22, 2019) 

22 

 8. Kalogeras, A. P., Gialelis, J. V, Alexakos, C. E., Georgoudakis, M. J., & Koubias, S. A. (2006). Vertical 

integration of enterprise industrial systems utilizing web services. IEEE Transactions on Industrial Infor-

matics, 2(2), 120–128. doi: 10.1109/TII.2006.875507. 

 9. Lemaignan, S., Siadat, A., Dantan, J. Y., & Semenenko, A. (2006). MASON: A proposal for an ontology 

of manufacturing domain. In: IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence 

and Its Applications (DIS’06) (pp. 195–200). doi: 10.1109/DIS.2006.48. 

 10. Nach, H., & Lejeune, A. (2008). Implementing ERP in SMEs: Towards an ontology supporting managerial 

decisions. In: 2008 International MCETECH Conference on e-Technologies (mcetech 2008) (pp. 223–

226). doi: 10.1109/MCETECH.2008.11. 

 11. OWL – Semantic Web Standards. (n.d.). Retrieved July 22, 2019, from https://www.w3.org/OWL/ 

 12. Sauter, T. (2005). Integration aspects in automation – a technology survey. In: 2005 IEEE Conference on 

Emerging Technologies and Factory Automation (Vol. 2, pp. 9–263). doi: 10.1109/ETFA.2005.1612688. 

 13. Web Services Glossary § Web service, W3C. (2004). Retrieved July 21, 2019, from 

https://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#webservice 

 14. Zoubeidi, M., Kazar, O., Mesbahi, N., & Benharzallah, S. (2014). Toward an architecture for the semantic 

integration in enterprise resource planning. In: 2014 International Workshop on Advanced Information Sys-

tems for Enterprises, IWAISE 2014 (pp. 45–50). doi: 10.1109/IWAISE.2014.10. 

 

https://doi.org/10.1109/TII.2006.875507
https://doi.org/10.1109/DIS.2006.48
https://doi.org/10.1109/MCETECH.2008.11
https://www.w3.org/OWL/
https://doi.org/10.1109/ETFA.2005.1612688
https://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#webservice
https://doi.org/10.1109/IWAISE.2014.10

